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Polymorphic HLAs form the primary immune barrier to cell therapy.
In addition, innate immune surveillance impacts cell engraftment,
yet a strategy to control both, adaptive and innate immunity, is
lacking. Here we employed multiplex genome editing to specifi-
cally ablate the expression of the highly polymorphic HLA-A/-B/-C
and HLA class II in human pluripotent stem cells. Furthermore, to
prevent innate immune rejection and further suppress adaptive
immune responses, we expressed the immunomodulatory factors
PD-L1, HLA-G, and the macrophage “don’t-eat me” signal CD47
from the AAVS1 safe harbor locus. Utilizing in vitro and in vivo
immunoassays, we found that T cell responses were blunted.
Moreover, NK cell killing and macrophage engulfment of our engi-
neered cells were minimal. Our results describe an approach that
effectively targets adaptive as well as innate immune responses
and may therefore enable cell therapy on a broader scale.
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Amajor obstacle for cell therapy is the rejection of allogeneic
cells by the recipient’s immune system. However, multiple

limitations prohibit the broader use of banking cells with defined
HLA haplotypes and patient-specific induced pluripotent stem
cells (iPSCs) (1, 2), emphasizing the need for “off-the-shelf”
universal cell products. Ablating the highly polymorphic HLA
class Ia and class II molecules is necessary to prevent the acti-
vation of cytotoxic CD8+ T and CD4+ T helper cells. Recently,
the power of the CRISPR/Cas9 genome-editing system provided
us and others with a tool to interfere with HLA class I expression
in human pluripotent stem cells (hPSCs) or hematopoietic cells
by knocking out the accessory chain beta-2-microglobulin (B2M)
(3–7) and to eliminate HLA class II expression by targeting its
transcriptional master regulator, CIITA (7, 8). However, the deletion
of B2M also prevents the surface expression of the nonpolymorphic
HLA class Ib molecules HLA-E and HLA-G, which are required to
maintain NK cell tolerance (9, 10). Therefore, individual deletion of
the HLA-A/-B/-C genes may represent a more favorable strategy to
protect the donor cells from CD8+ T cell-mediated cytotoxicity
without losing the HLA class Ib protective function.
It has previously been shown that the T cell checkpoint inhib-

itors PD-L1 and CTLA-4Ig can protect stem cells from rejection
in a humanized mouse model (11). However, this approach left
the HLA barrier intact, which may result in hyperacute rejection
of the engrafted cells precipitated by preexisting anti-HLA anti-
bodies (12, 13). Moreover, CTLA-4Ig can also impair T regulatory
cell (Treg) homeostasis and function, thereby possibly jeopardiz-
ing the establishment of operational immune tolerance (14, 15).
In addition to adaptive immune responses, innate immune

cells, such as NK cells and macrophages, serve an important role
in graft rejection (16). A recent report addressed NK-cell–mediated
lysis of B2M-deficient cells by expressing a B2M-HLA-E fusion
construct (17). However, this strategy did not cover NK cells lacking
NKG2A, the inhibitory receptor for HLA-E, the reactivity of which

could still be concerning (18, 19). HLA-G, an NK cell inhibitory
ligand expressed at the maternal–fetal interface during pregnancy
that acts through multiple inhibitory receptors (9, 20), might thus
be a better candidate to fully overcome NK cell responses.
Moreover, macrophages, which contribute to rejection of trans-
planted cells, may be controlled by expression of CD47, a “don’t-
eat-me” signal that prevents cells from being engulfed by macro-
phages (21, 22); however, this approach has not yet been explored
to protect hPSCs and their differentiated derivatives from mac-
rophage engulfment. Furthermore, a convincing strategy to target
both adaptive and innate immunity is yet to be proposed.
Here, we employed the CRISPR/Cas9 system to selectively ex-

cise the genes encoding the polymorphic HLA class Ia members,
HLA-A/-B/-C, and ablated HLA class II expression by targeting
CIITA in hPSCs. The resulting HLA-deficient, “immune-opaque”
cells were further modified to express the immunomodulatory
factors PD-L1, HLA-G, and CD47, which target immune surveil-
lance by T cells, NK cells, and macrophages, respectively. Our
strategy addresses both adaptive and innate immune responses
and, together with other genetic modifications, may ultimately
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result in “off-the-shelf” universal cell products suitable for trans-
plantation into any patient.

Results
Selective Ablation of Polymorphic HLA-A/-B/-C and HLA Class II
Expression. Given that the human MHC class I genes HLA-A,
HLA-B, and HLA-C are highly homologous, designing specific
short guide RNAs (sgRNAs) targeting the coding regions of each
gene proved challenging. Thus, we employed a dual guide mul-
tiplex strategy targeting noncoding regions to excise all three
genes from the genome of an hPSC line (HUES8). In the HLA
locus,HLA-B andHLA-C are adjacent, whereasHLA-A is located
nearer the telomere. To simultaneously delete HLA-B and HLA-
C, two sgRNAs were designed upstream of HLA-B and down-
stream of HLA-C (Fig. 1A). Similarly, to remove HLA-A, one
sgRNA was designed upstream and another sgRNA downstream
of HLA-A (Fig. 1B). Both deletions were confirmed by PCR
amplicons spanning the Cas9 cutting sites (SI Appendix, Fig. S1 A
and B). Ablation of HLA-A/-B/-C proteins in the final HLA
knockout (KO) clone was verified by flow cytometry (Fig. 1C).
To prevent HLA class II expression, we targeted the CIITA

gene, using a previously reported sgRNA (23). A pair of PCR
primers flanking the cleavage site in the first exon of CIITA was
used to amplify the region spanning the cutting site (Fig. 1D).
PCR amplicons were Sanger-sequenced to identify biallelic frame
shifts (SI Appendix, Fig. S1 C andD). To demonstrate loss of HLA
class II expression, we differentiated both WT and KO hPSCs into
endothelial cells (ECs). Of note, differentiated WT and KO ECs
expressed equivalent levels of the EC marker CD144 (VE-
Cadherin), indicating that the differentiation efficiency of the
resulting cells was unaffected by genome editing (SI Appendix, Fig.
S1E). Importantly, induction of HLA-DR expression upon IFNγ
stimulation was abolished in KO ECs (Fig. 1E).

Targeted Integration of Immunomodulatory Factors into the AAVS1
Safe Harbor Locus.We hypothesized that ablating the polymorphic
HLA class Ia and class II molecules would eliminate T cell-
mediated adaptive immune rejection. However, HLA-deficient
cells would likely still be susceptible to innate immune cells in-
volved in an alloresponse, such as NK cells and macrophages,
prompting us to introduce immunomodulatory factors for the
following reasons: (i) while we left the nonpolymorphic HLA-E
gene intact, HLA-E surface expression will likely be severely
impaired by the removal of polymorphic HLA class Ia genes
(24). Thus, failure to express any HLA class I may render donor
cells vulnerable to NK-cell–mediated lysis. To protect our engi-
neered cells from NK cells, we sought to introduce HLA-G into
the HLA knockout cells. (ii) To control macrophage engulfment,
we aimed to overexpress CD47. (iii) HLA-G can present classical
peptides derived from intracellular proteins to T cells (25), which
could potentially re-expose our modified cells to CD8+ T cell
immune surveillance. Furthermore, γδT cells can directly recog-
nize antigens and initiate a cytotoxic response even in an HLA-
null background (26). To counteract any residual T cell activity,
we decided to knock in PD-L1, directly suppressing T cell re-
sponses (27). Moreover, PD-L1 expression may also contribute to
protecting transplanted cells from innate immune rejection by
inhibiting PD-1+ NK cells (28, 29) and PD-1+ macrophages (30).
To avoid random integration and positional effects on trans-

gene expression, we sought to knock the immunomodulatory
factors into the AAVS1 safe harbor locus (31). We designed two
donor plasmids, one containing a PD-L1; HLA-G; CD47 ex-
pression cassette and another one containing a PD-L1; CD47
expression cassette, both driven by a CAGGS promoter (Fig.
1G). The donor plasmids were electroporated together with a
sgRNA targeting the AAVS1 locus into the HLA-A−/−HLA-
B−/−HLA-C−/−CIITAindel/indel KO clone. Integration into the
AAVS1 locus was verified by PCR (SI Appendix, Fig. S1F). Two
clones were isolated following the workflow in SI Appendix, Fig.
S1G and analyzed by flow cytometry; one named KI-PHC that
expressed PD-L1, HLA-G, but did not significantly overexpress

CD47, compared with WT cells (Fig. 1 H and I), and a second
one named KI-PC that expressed PD-L1 and displayed an ele-
vated CD47 level (Fig. 1J and SI Appendix, Fig. S2A). Loss of
HLA class Ia and class II expression were confirmed in both KI
hPSCs or ECs (SI Appendix, Fig. S2 B–D). Thus, we successfully
inserted immunomodulatory factors into the AAVS1 safe harbor
locus of HLA null cells. Altogether, we generated three engi-
neered hPSC lines: KO, KI-PHC, and KI-PC (Fig. 1F).
Next, we sought to confirm the transgene expression in deriva-

tives of the engineered hPSC lines. For this purpose, we differen-
tiated the engineered hPSCs into vascular smooth muscle cells
(VSMCs). WT, KO, KI-PHC, and KI-PC VSMCs expressed
equivalent levels of the VSMC marker CD140b (PDGFRB),
confirming similar differentiation efficiencies (SI Appendix, Fig.
S2E). In KI-PHC VSMCs, we observed a subpopulation with
modestly higher expression of PD-L1 and HLA-G, compared with
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Fig. 1. Genome editing ablates polymorphic HLA-A/-B/-C and HLA class II
expression and enables expression of immunomodulatory factors from AAVS1
safe harbor locus. (A) Schematic representation of HLA-B and HLA-C CRISPR/
Cas9 knockout strategy. Each pair of scissors represents two sgRNAs. Purple,
red, and green arrows indicate primers used for PCR screening. (B) Schematic
representation of HLA-A knockout strategy. Yellow arrows show primers used
for PCR screening. (C) FACS plots demonstrating successful ablation of HLA-A/
B/C in HUES8. WT or KO hPSCs were treated with IFNγ for 48 h before staining
with the indicated antibodies. (D) Targeting strategy of CIITA locus. Blue ar-
rows indicate primers used for PCR and Sanger sequencing. (E) HLA-DR mean
fluorescence intensity (MFI) in differentiated CD144+ WT and KO ECs. (F)
Schematic describing the genotypes of WT, KO, KI-PHC, and KI-PC cell lines. (G)
Knock-in strategy of immunomodulatory molecules. Scissors represent the
sgRNA targeting the AAVS1 locus. Black and gray arrows indicate primers used
for PCR screening. (H) PD-L1 and HLA-G expression in KI-PHC hPSCs. (I) CD47
expression in KI-PHC cells. MFIs relative toWT cells are indicated on the right of
the histograms. (J) PD-L1 and CD47 expression in KI-PC hPSCs.
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WT VSMCs, and a major population displaying significantly ele-
vated levels of PD-L1 and HLA-G (SI Appendix, Fig. S2F).
However, we did not observe increased CD47 expression in
KI-PHC VSMCs (SI Appendix, Fig. S2F), which could be a
result of incomplete expression from our targeting cassette,
where all three gene products are linked by a 2A-peptide (Fig.
1G). Similar expression patterns of the transgenes were ob-
served in KI-PC VSMCs (SI Appendix, Fig. S2F).
To assess whether HLA-E surface trafficking was impaired in

the HLA KO background, we stimulated VSMCs with IFNγ and
stained the cells with an HLA-E–specific antibody. While WT
VSMC drastically up-regulated HLA-E expression, its cell-surface
levels were greatly reduced in KO VSMCs (SI Appendix, Fig.
S2G), which was not due to impaired HLA-E gene expression (SI
Appendix, Fig. S2H). Surprisingly, HLA-E surface levels were not
restored by HLA-G expression in the KI-PHC VSMCs (SI Ap-
pendix, Fig. S2G), which is inconsistent with a previous report that
the HLA-G leader peptide is sufficient to promote HLA-E surface
trafficking (32). Nevertheless, HLA-G surface trafficking was un-
impaired in KI-PHC VSMCs (SI Appendix, Fig. S2F), providing
further incentive to introduce this tolerogenic factor into our
engineered cell products to compensate for the reduction of HLA-
E surface expression in an HLA-A/-B/-C null background.

Modified Human Pluripotent Stem Cell Lines Retain Pluripotency and
Differentiation Potential. To confirm that our engineered hPSC
lines retained pluripotency, expression of NANOG, OCT4,
SSEA3, SSEA4, and TRA-1–60 was assessed by immunofluo-
rescence in KO, KI-PHC, and KI-PC hPSCs and was found to be
equivalent to that of unmodified hPSCs (Fig. 2A). In addition,
KO, KI-PHC, and KI-PC hPSCs were differentiated into the
three germ layers. qRT-PCR was carried out to examine the
expression of ectoderm, mesoderm, and endoderm markers and
compared with the three germ layers derived from unmodified
hPSCs. All of the lineage markers analyzed were found expressed
at similar levels in derivatives of WT as well as of the three
engineered cell lines (Fig. 2B). In addition, the KO, KI-PHC, and
KI-PC hPSCs displayed a normal karyotype (Fig. 2C).
To analyze potential off-target effects of the sgRNAs used to

engineer our hPSC lines, we PCR-amplified 21 top-ranked in silico
predicted exonic off-target sites from the engineered hPSC lines as
well as from the parental WT hPSCs. Sanger sequencing of the
PCR products did not reveal any unintended edits on these sites
except for the pseudogene HLA-H (HFE), which displayed a
perfect match to the sgRNA upstream of HLA-A (SI Appendix,
Figs. S3 and S4). More extensively, we performed target capture
sequencing for all of the 648 predicted off-target sites for the eight
sgRNAs used in this study. As a result, in addition to 12 naturally
occurring SNP/polymorphic sites identified, we confirmed HLA-H
(HFE) as an off-target site in all three cell lines. Moreover, we
detected an intronic off-target site in TRAF3 in all three cell lines
resulting from targeting HLA-C, as well as an intronic off-target
site in CPNE5 in the KI-PC cell line as a result of the AAVS1
sgRNA (SI Appendix, Figs. S5 and S6 and Dataset S1). Altogether,
although three off-target events were detected, our engineered
hPSC lines retained pluripotency and their capacity to differentiate
into cells of all three germ layers, as well as into VSMCs and ECs
with differentiation efficiencies similar to their WT counterparts.

Reduced T Cell Responses Against KO and KI Cell Lines. To investi-
gate whether removing the polymorphic HLA molecules is suf-
ficient to prevent T cell-mediated immune responses, or may be
further suppressed by PD-L1, we cocultured WT, KO, or KI-PHC
cells with allogeneic T cells from healthy donors. Three in vitro
T cell immunoassays were performed: T cell proliferation, acti-
vation, and killing assays. Since HLA class I expression is modest
in hPSCs (33, 34), we differentiated our engineered as well as WT
hPSCs into ECs, which express both HLA class I and II following
IFNγ stimulation, or into VSMCs, which express only HLA class I,
before using them in the respective immunoassays.

For T cell proliferation assays, WT, KO, and KI-PHC ECs
were pretreated with IFNγ and subsequently cocultured with
carboxyfluorescein succinimidyl ester (CFSE)-labeled allogeneic
CD3+ T cells for 5 d. T cells were then analyzed for dilution of
the CFSE signal by flow cytometry as a readout for T cell pro-
liferation in the CD3/4/8+ T cell subpopulations (SI Appendix,
Fig. S7A). FACS plots of one representative T cell donor are
shown in SI Appendix, Fig. S7B. As predicted, the percentage of
total proliferating T cells (CD3+) was reduced when incubated
with KO ECs (4.17%) or KI-PHC ECs (3.87%) compared with
WT ECs (8.29%) (Fig. 3A, Left). CD4+ T cells followed a similar
pattern (Fig. 3A, Middle). Moreover, CD8+ cytotoxic T cells
exhibited significantly reduced proliferation when cocultured with
KO ECs (7.71%) or KI-PHC ECs (5.95%), compared with WT
ECs (14.32%) (Fig. 3A, Right). Importantly, compared with co-
cultures with KO ECs, CD8+ T cells proliferated significantly less
in the presence of KI-PHC ECs (Fig. 3A, Right), indicating that
CD8+ T cell activation was suppressed even further by over-
expression of PD-L1 in an HLA null background. To further in-
vestigate the suppressive role of PD-L1 during the responses of
different T cell subpopulations, we transduced hPSCs with an
inducible PD-L1 construct and differentiated them into ECs be-
fore conducting a T cell proliferation assay. We found that only
CD8+, not CD4+, T cell proliferation was reduced in the presence
of PD-L1–expressing ECs, compared with WT ECs, arguing for a
specific inhibitory effect of PD-L1 on the CD8+ T cell subset (SI
Appendix, Fig. S7 C and D).
Utilizing the same coculture of T cells with ECs as target cells,

we examined the expression of the early T cell activation marker
CD69 in a 3-d coculture and of CD154 (CD40L) in a 5-d coculture
(Fig. 3B). We found reduced percentages of CD69+ and
CD154+ T cells (CD3+) in cocultures with KI-PHC ECs (2.27 and
0.4143%, respectively) or KO ECs (2.303 and 0.65%, respectively),
compared with T cells coincubated with WT ECs (7.7 and 7.123%,
respectively) (Fig. 3B). The same trends were observed in the
CD4+ and the CD8+ T cell populations (Fig. 3B). However, we did
not observe a significantly reduced expression of activation
markers in T cells against KI-PHC ECs compared with KO ECs.
To quantify T cell killing, we measured lactate dehydrogenase

(LDH) released from VSMCs as a surrogate for T cell cytotoxicity.
In this setting, only the CD8+ T cells were expected to be activated

BA
WT KO

NANOG

OCT4

SSEA3

SSEA4

TRA-1-60

C KO KI-PHC KI-PC

R
el

at
iv

e 
ex

pr
es

si
on

A
FP

S
O

X
17

BR
AC

H
YU

R
Y

FL
K

1

M
A

P
2

P
A

X
6

Endoderm

Mesoderm

Ectoderm

WT
KO
KI-PHC
KI-PC

10000

1000

100

1

10

Fig. 2. KO and KI cell lines retain pluripotency and differentiation potential.
(A) Immunofluorescence indicating that pluripotency markers were expressed
by WT, KO, KI-PHC, and KI-PC hPSCs. (Scale bars, 200 μm.) (B) qRT-PCR was
carried out to survey trilineage markers after WT, KO, KI-PHC, and KI-PC
hPSCs were differentiated into the indicated three germ layers. Relative
quantification was normalized to each gene level in undifferentiated hPSCs.
(C) G-banding of chromosomes in KO, KI-PHC, and KI-PC cell lines demon-
strated normal karyotypes after successive rounds of genome engineering.

Han et al. PNAS | May 21, 2019 | vol. 116 | no. 21 | 10443

IM
M
U
N
O
LO

G
Y
A
N
D

IN
FL
A
M
M
A
TI
O
N

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
3,

 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902566116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902566116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902566116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902566116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902566116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902566116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902566116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902566116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902566116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902566116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902566116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902566116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902566116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902566116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902566116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902566116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902566116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902566116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902566116/-/DCSupplemental


www.manaraa.com

by HLA class I-TCR (T cell receptor) engagement, given that
VSMCs express solely HLA class I. We found that the
CD8+ T cell cytotoxicity against KI-PHC VSMCs (15.31%) was
the lowest compared with KO (18.86%) and WT (37.65%)
VSMCs (Fig. 3C). This observation suggests that the CD8+ T cell
cytotoxicity was suppressed even further by PD-L1 expression in
KI-PHC VSMCs, consistent with the results of the CD8+ T cell
proliferation assay.
To assess T cell responses in vivo, WT and the engineered hPSCs

were transplanted s.c. into immunodeficient mice and allowed to
form teratomas over the course of 4–6 wk. Presensitized allogeneic
CD8+ T cells were then adoptively transferred via tail vein injection
and teratoma growth was monitored for an additional 8 d (Fig. 4A).
As measured by CD69 and PD-1 expression of CD8+ T cells pre-
and post priming, the T cells used for injection were activated
(CD69+) without signs of exhaustion (PD-1+) following sensitiza-
tion (SI Appendix, Fig. S8A). In agreement with the hypothesis that
only the WT cells will be rejected, WT teratomas displayed a slower

increase in volume compared with KO teratomas 7 d after injection
of CD8+ T cells, which was not due to a slower growth rate of the
WT teratoma themselves (Fig. 4 B and C). These results suggest
that the KO teratomas were protected against T cell-mediated re-
jection. Moreover, although not significant, the average volumes of
the KI-PHC and KI-PC teratomas were also larger than that of the
WT teratomas 7 d post T cell infusion (Fig. 4B). In addition, ter-
atomas derived from both the KO and KI cell lines displayed re-
duced T cell infiltration, as evidenced by qPCR for the human
effector T cell markers CD8 and IL-2 (Fig. 4D), as well as by his-
tology (Fig. 4E). Together, these observations suggest that removal
of the polymorphic HLA molecules from the cell surface of
transplanted cells can effectively block T cell-mediated rejection
in vivo, matching our in vitro observations.

KI Cell Lines Evade NK Cell and Macrophage Responses. Due to the
lack of HLA class Ia molecules and impaired HLA-E surface ex-
pression, we expected the HLA KO hPSCs and their derivatives to
be vulnerable to NK-cell–mediated lysis, but not the KI-PHC cell
line as a result of HLA-G expression. To test our hypothesis, we
coincubated allogeneic NK cells from healthy donors with WT,
KO, or KI-PHC VSMCs. CD56+ NK cells were analyzed by flow
cytometry for surface expression of the degranulation marker
CD107a as a readout of NK cell activation (SI Appendix, Fig. S8B).
Of note, NK cell degranulation in the presence of KO VSMCs
(13.51%) was not significantly higher than in cocultures with WT
VSMCs (10.16%) (Fig. 5A), suggesting the lack of an NK cell ac-
tivation signal on hPSC-derived VSMCs. In agreement with our
hypothesis, we found that the percentage of CD107a+ NK cells in
cocultures with KI-PHC VSMCs (5.43%) was significantly lower
than in KO VSMC cocultures (13.51%) (Fig. 5A), suggesting that
NK cell activity is indeed inhibited by HLA-G expression in
KI-PHC VSMCs. FACS plots of one representative donor are
shown in SI Appendix, Fig. S8C. We also examined LDH released
from apoptotic VSMCs after coincubation with NK cells to quantify
NK cell cytotoxicity. Consistent with NK cell degranulation, we
observed that NK cell cytotoxicity was reduced when NK cells
were incubated with KI-PHC VMSCs (Fig. 5B).
Finally, we examined macrophage activity using a pH-sensitive

fluorescent dye (pHrodo-Red) that emits a signal upon phago-
cytic engulfment. We hypothesized that overexpression of CD47
in KI-PC VSMCs would reduce macrophage engulfment. As a
positive control, a CD47 knockout (CD47−/−) cell line was gen-
erated, and loss of CD47 cell-surface expression was verified by
flow cytometry (SI Appendix, Fig. S8D). pHrodo-Red–labeled
VSMCs differentiated from WT, CD47−/−, and KI-PC cells
were either treated with staurosporine (STS) to induce apoptosis
or left untreated and then incubated with monocyte-derived
macrophages from healthy donors. The emergence of red sig-
nal, an indicator of VSMC engulfment by macrophages, was
monitored by live cell imaging, and the fluorescence intensity
was quantified. Of note, with or without STS treatment, KI-PC
VSMCs displayed significantly decreased engulfment by macro-
phages compared with CD47−/− or WT VSMCs (Fig. 5 C and D
and SI Appendix, Fig. S8E). These data demonstrate that over-
expression of CD47 can indeed minimize macrophage engulf-
ment of engineered hPSC-derived VSMCs.

Discussion
In this study, we applied multiplex CRISPR/Cas9 genome editing
to render hPSC hypoimmunogenic to both adaptive and innate
immune responses. We specifically deleted the highly polymorphic
HLA-A/-B/-C genes and prevented the expression of HLA class II
genes by targeting CIITA. In addition, we introduced the immu-
nomodulatory factors PD-L1, HLA-G, and CD47 into the AAVS1
safe harbor locus. We found that engineered hPSC derivatives
elicited significantly less immune activation and killing by T cells
and NK cells and displayed minimal engulfment by macrophages.
During the gene modification process, a 95-kb deletion was

generated that, in addition to the HLA-B/-C genes, also harbors
MIR6891 and four pseudogenes. Moreover, one exonic off-target
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event was observed in the transcribed pseudogene HLA-H, yet
these genomic alterations did not impact the growth rate or dif-
ferentiation efficiencies of the KO and KI cell lines.
As expected, the removal of polymorphic HLA expression in

hPSCs and their derivatives, ECs and VSMCs, resulted in reduced
T cell responses in vitro and in vivo (Figs. 3 and 4). An interesting
observation from our T cell assays is that overexpression of the
checkpoint inhibitor PD-L1 had a significant impact only on the
proliferation and cytotoxicity of CD8+ T cells (Fig. 3A). This may
have several possible explanations: (i) the levels of the PD-L1
receptor, PD-1, are higher on CD8+ T cells than on CD4+ T
cells and (ii) CD8+ T cells are the cell type most responsive to
target cell exposure in our assays and hence will also express higher
levels of the negative regulator PD-1. Moreover, we noted that this
inhibitory effect of PD-L1 on CD8+ T cell proliferation occurred
even in the absence of HLA (Fig. 3A), suggesting that HLA-TCR
interaction is not required for PD-L1 to act as a tolerogenic factor.
Interestingly, in all three in vitro T cell immunoassays, we still
observed residual T cell activity even in cocultures with the KI-
PHC cell line, compared with the negative control (Fig. 3), and
thus T cell responses to these cells appeared blunted but not
eliminated. This is most likely due to the experimental setup,
considering that target cells may secrete factors that promote T cell
activation independently of the presence of HLA. Alternatively,
the residual T cell activity may be a result of the modifications in
our cell lines, which may have introduced additional antigens rec-
ognizable by the immune system.

While acute graft rejection is mainly T cell-mediated, the role of
other immune cells such as macrophages, NK cells, and B cells
must also be considered with regards to long-term survival of
therapeutic cells. Our NK cell assays suggest that HLA-G ex-
pression was able to control NK cell activities, although the con-
tribution of PD-L1 in our experimental setup cannot be ruled out
without the use of an HLA-G–blocking antibody in this assay.
Similarly, overexpression of CD47 in combination with PD-L1
effectively reduced macrophage engulfment. With regards to
long-term engraftment, in particular, antibody-dependent cellular
cytotoxicity by NK cells and allo-antibody–mediated complement
activation as the main drivers of chronic graft rejection must be
considered in the future (35–37). While various humanized mouse
models exist to assess the immunogenicity of transplanted cells,
they are limited in recapitulating a full immune response. There-
fore, the development of improved in vivo models for testing cell
transplantation and rejection is imperative (38–41).
Finally, overcoming the immune barrier to transplantation

would also provide an exciting new modality to treat autoimmune
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diseases such as type 1 diabetes and multiple sclerosis, where one
particular cell type is attacked by the patient’s immune system and
needs replacement. Thus, the generation of cells that can be safely
transplanted into anyone, without immune rejection, holds the
promise of unlocking the full potential of regenerative medicine.

Materials and Methods
Detailed materials andmethods are described in SI Appendix, Supplementary
Materials and Methods.

The use of human pluripotent stem cells was approved by the Embryonic
Stem Cell Research Oversight Committee (ESCRO), Harvard University. All
human blood samples used for this study were deidentified, discarded clinical
material. The Committee on the Use of Human Subjects [the Harvard in-
stitutional review board (IRB)] determined that this use is exempt from the
requirements of IRB review. All animal experiments were performed in ac-
cordance to Harvard University International Animal Care andUse Committee
regulations.

Human ES Cell Culture and EC and VSMC Differentiation. HUES8 cells (42) were
grown on Geltrex (Life Technologies)-coated plates in mTeSR1 (StemCell
Technologies). Cells were passaged with Gentle Cell Dissociation Reagent
(StemCell Technologies) and replated in media supplemented with
RevitaCell (ThermoFisher Scientific). Human ECs and VSMCs were differen-
tiated following our previously published protocols (43).

T Cell Assays. To assess T cell proliferation, CD3+ T cells were labeled with
CellTrace CFSE (ThermoFisher Scientific). ECs were pretreated with IFNγ before
coincubation with CFSE-labeled T cells for 5 d in media supplemented with

20 U/mL IL-2. T cells were then stained with anti-CD3/4/8 antibodies before
CFSE intensity was analyzed on a LSR II. The T cell activation markers CD69 and
CD154 were analyzed 3 and 5 d after coculture, respectively. T cell killing was
assessed following a 5-d coculture with VSMCs at the indicated effector/target
ratio. Supernatants were analyzed by the Pierce LDH Cytotoxicity Assay Kit
(ThermoFisher Scientific) following the manufacturer’s instructions.

NK Cell Assays. NK cell degranulation was determined as described in ref. 44.
NK cells were stained with α-CD56 PE (Biolegend), and CD107a surface ex-
pression was analyzed on a FACSCalibur. NK killing activity was determined
using the Pierce LDH Cytotoxicity Assay Kit (ThermoFisher Scientific) fol-
lowing the manufacturer’s instructions.

Macrophage Phagocytosis Assay. VSMCs were pretreated with 200 nM staur-
osporine (Sigma) or left untreated and subsequently dissociated and labeled
with pHrodo-Red (IncuCyte). Labeled VSMCs were added to humanmonocyte-
derivedmacrophages, and cocultures were imaged using the Celldiscover 7 live
cell imaging platform (Zeiss). Total integrated intensity (mean fluorescence
intensity × total area) was analyzed using the ZEN imaging software (Zeiss).

Statistical Analyses. Statistical analyseswere performedusing Prism 7 (Graphpad).
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